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Abstract
We present two quantitative behavioral equivalences over species of a chemical reaction network
(CRN) with semantics based on ordinary differential equations. Forward CRN bisimulation iden-
tifies a partition where each equivalence class represents the exact sum of the concentrations
of the species belonging to that class. Backward CRN bisimulation relates species that have
identical solutions at all time points when starting from the same initial conditions. Both no-
tions can be checked using only CRN syntactical information, i.e., by inspection of the set of
reactions. We provide a unified algorithm that computes the coarsest refinement up to our bisim-
ulations in polynomial time. Further, we give algorithms to compute quotient CRNs induced
by a bisimulation. As an application, we find significant reductions in a number of models of
biological processes from the literature. In two cases we allow the analysis of benchmark models
which would be otherwise intractable due to their memory requirements.
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1 Introduction

At the interface between computer science and systems biology is the idea that biological
systems can be interpreted as computational processes [23, 12], leading to a number of formal
methods applied to study biomolecular systems [5, 18, 25]. In this context, chemical reaction
networks (CRNs), a popular mathematical model of interaction in natural sciences, can also
be seen as a kernel concurrent language for natural programming.

In this paper we present, for the first time to our knowledge, quantitative bisimulation
equivalences for CRNs with the well-known interpretation based on ordinary differential
equations (ODEs). (To make the paper self-contained, all background is given in Section 2.)
In this semantics, each species is associated with an ODE giving the deterministic evolution
of its concentration starting from an initial condition. Our bisimulations are equivalences
over species that induce a reduced CRN that exactly preserves the dynamics of the original
one. This is an important goal, especially in order to cope with the potentially very large
number of species and reactions in many biological networks [16, 17].

We study two equivalences, developed in the Larsen-Skou style of probabilistic bisim-
ulation [29], that are based on two distinct ideas of observable behavior. Forward CRN
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2 Forward and Backward Bisimulations for Chemical Reaction Networks

bisimulation yields an aggregated ODE where the solution gives the exact sum of the concen-
trations of the species belonging to each equivalence class. In backward CRN bisimulation,
instead, equivalent species have the same solution at all time points; in other words, backward
CRN bisimulation relates species whose ODE solutions are equal whenever they start from
identical initial conditions. The use of “forward” and “backward” has a long tradition in
models of computation based on labelled transition systems [19]. In the case of quantitative
variants, for instance those defined for process algebra with a continuous-time Markov chain
(CTMC) semantics [26, 27, 8, 4], forward bisimulations are equivalences that induce a CTMC
aggregation in the sense of ordinary lumpability [7], where the probability of an equivalence
class is equal to the sum of the probabilities of the states belonging to that class. This is found
by checking conditions on the outgoing transitions of related states in the transition diagram.
A backward bisimulation induces a CTMC aggregation in the sense of weak lumpability [21],
where all states in the same equivalence class have a time-invariant conditional probability
distribution; exact lumpability is a special case where the conditional probability distribution
is uniform, in the sense that any two states of each equivalence class have the same probability
at any point in time whenever they have the same initial probabilities. It is found by relating
states according to conditions on their predecessor states [21, 34, 7].

Despite being similar in spirit, technically our bisimulations are fundamentally different
for two reasons. First, they concern a continuous-state semantics based on ODEs instead of
a discrete-state CTMC. Second, they operate at the structural, syntactical level, because
they are defined with quantities that can be computed by only inspecting the reactions
of a CRN. Still, the repercussions of our bisimulations on the semantics are explained
according to certain theories of aggregation. In particular, forward CRN bisimulation yields
an aggregated system in the sense of ODE lumpability [36, 30]. This theory covers linear
transformations of the original state variables in general; here we consider an instance, which
we call ordinary fluid lumpability, where the transformation is induced by a partition of
state variables. (Forward bisimulation is presented in Section 3.1.) Backward bisimulation
(presented in Section 3.2) is related to exact fluid lumpability, introduced in the context
of process algebra with fluid semantics [37], identifying process terms with the same ODE
solution when initialized equally. The disadvantage of forward CRN bisimulation is that it is
lossy (yet exact) because, similarly to the forward stochastic analogues, from the aggregated
ODE system in general it is not possible to recover the solutions for the individual species
within the same equivalence class. On the other hand, it does not impose restrictions on the
initial conditions, which instead are present in our backward variant. As a further important
difference, forward CRN bisimulation (again, like its stochastic analogues) turns out to be
a sufficient condition for ODE lumpability. Instead, backward CRN bisimulation enjoys a
full characterization, in the sense that there exists a backward CRN bisimulation between
two species if and only if they have the same ODE solutions (provided that they start from
equal initial conditions). More in general, by means of a number of examples we will show
that the two equivalences are complementary because not comparable. In other words, there
exist models that can be reduced up to forward CRN bisimulation but not by the backward
variant, and vice versa; at the same time, there are models that can be reduced by both.

To enhance the usefulness of these notions, we present (in Section 5) a template partition-
refinement algorithm that is parametric with respect to the equivalence of interest, computing
the coarsest refinement up to either variant in polynomial time. To use our equivalences as
an automatic model reduction tool, we further give two algorithms (in Section 4) that provide
the quotient CRN induced by either bisimulation. With a prototype implementation available
at http://sysma.imtlucca.it/crnreducer/, we show (in Section 6) that we are able to
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reduce a number of case studies taken from the literature. Our bisimulations yielded quotient
CRNs with number of reactions and species up to four orders of magnitude smaller than the
original CRNs, leading to speed-ups in the ODE solution runtimes of up to five orders of
magnitude. In two cases, it was possible to analyze models that were otherwise intractable
directly within our experimental environment due to excessive memory requirements.
Related work. Behavioral equivalences have been recently proposed in [32] for comparing
CRNs; however, the analysis is carried out at the qualitative level, i.e., ignoring the dynamical
evolution. In [37] is introduced the notion of label equivalence for process algebra with fluid
semantics, which captures exact fluid lumpability (processes are equivalent whenever their
ODE solutions are equal at all time points). However, unlike backward CRN bisimulation,
label equivalence is only a sufficient condition for ODE reduction. Indeed, it works at a
coarser level of granularity as it relates sets of ODE variables, each corresponding to the
behavior of a sequential process. Instead, backward CRN bisimulation relates individual
ODE variables. Further, the conditions for equivalence, specific to the process algebra, are
difficult to check automatically because of the universal quantifiers over the ODE variables.
More important, no algorithm for computing the coarsest partition was developed. Similar
considerations apply to the process-algebra specific ordinary fluid lumpability in [38].

Cardelli’s notion of emulation between two CRNs is a (structural) mapping of species and
reactions that, like backward CRN bisimulation, guarantees the equality between the ODE
solutions at all time points [11]. An emulation requires a source and a target CRN — the
modeler is intended to have the suspicion that, for some given CRN, another CRN might be
related to it. But emulation cannot be used when one wants to discover equivalences between
species within the same given CRN. Thus, emulation is not useful for model reduction because
a-priori information about the structure of a quotient CRN is not available. Furthermore,
no algorithm is provided in [11] to find emulations automatically. Since backward CRN
bisimulation fully characterizes exact fluid lumpability, it is not difficult to show that backward
CRN bisimulation generalizes emulation in the sense that any emulation between two CRNs
can be understood in terms of a backward CRN bisimulation over the species of a “union
CRN” that contains all the reactions of the two CRNs of interest.

Model reductions have been studied in related models for biomolecular networks (e.g. [17,
22, 10]), most notably for rule-based systems such as BioNetGen [5] and the κ calculus [18].
These offer an intensional modeling approach, by providing graph-rewrite rules of interaction
instead of a complete enumeration of all chemical reactions involved. Differential fragments
for κ are self-consistent aggregates found by a static analysis on the model, identifying sums
of chemical species for which an ODE system can be explicitly written [17]. In this sense, they
are analogous to our CRN bisimulations, but with notable differences. First, fragmentation
works directly at the rule-based level. This has the advantage that the analysis is performed on
a set of rewrite rules, which is typically much more compact than the fully enumerated CRN.
However, fragmentation is domain-specific, hence the model must be conveniently expressed
as a biomolecular system (e.g., with complex formation or internal state modification). On
the other hand, CRN bisimulations work for a generic language-independent CRN, which
however must be explicitly given. Further, unlike CRN bisimulations, fragmentation is
performed on a “static” view of the model, without information on the reaction rates. The
ODE aggregations of both forward CRN bisimulation and fragmentation introduce loss of
information (in contrast to backward CRN bisimulation). But, unlike our forward variant, in
fragmentation the same species may be present in more than one fragment. Additionally,
species may occur in fragments with multiplicity numbers. Thus, fragmentation can be seen
as a form of improper lumping that is not necessarily induced by a partition of the original
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state-space variables [30]. Overall, because of these differences, it is not difficult to find
models that can be reduced by our CRN bisimulations and not by fragmentation, and vice
versa. This is presented in detail in Section 6.

2 Background

Notation. We write A→ B and BA for the functions from A to B. When f ∈ A→ B and
a ∈ A, we set fa := f(a). Moreover, for any X ⊆ A and b ∈ B, we define f(X) := {b ∈ B |
∃a ∈ X.(f(a) = b)}. Sets and multisets are denoted by {. . .} and {| . . . |}, respectively. Also,
we shall not distinguish among an equivalence relation and the partition induced by it, and
shall use the symbol ∼H to denote the equivalence relation with H = S/∼H. Finally, given
two partitions H1 and H2 of a given set S, we say that H1 is a refinement of H2 if for any
H1 ∈ H1 there exists a (unique) H2 ∈ H2 such that H1 ⊆ H2.

2.1 Chemical Reaction Networks
Formally, a CRN (S,R) is a pair consisting of a finite set of species S taken from a countable
infinite universe of all species, and a finite set of chemical reactions R. A reaction is a triple
written in the form ρ

α−−→ π, where ρ and π are the multisets of species reactants and products,
respectively, and α > 0 is the reaction rate. In particular, we focus on basic chemistry where
only elementary reactions are considered, where at most two reactants (possibly of the same
species) interact. No restrictions are instead imposed on products. Several models found
in the literature (including those discussed in Section 6) belong to this class. Also, this is
consistent with the physical considerations which stipulate that reactions with more than
two reactants are very unlikely to occur in nature [24]. We denote by ρ(X) the multiplicity
of species X in the multiset ρ, and byMS(S) the set of finite multisets of species in S. To
adhere to standard chemical notation, we shall use the operator + to denote multiset union,
e.g., X + Y + Y (or just X + 2Y ) denotes the multiset {|X,Y, Y |}. We may also use X to
denote either the species X or the singleton {|X|}.

The (autonomous) ODE system V̇ = F (V ) underlying a CRN (S,R) is F : RS≥0 → RS ,
where each component FX , with X ∈ S is defined as:

FX(V ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α ·
∏
Y ∈S

V
ρ(Y )
Y .

This represents the well-known mass-action kinetics, where the reaction rate is proportional
to the concentrations of the reactants involved. Since the ODE system of a CRN is given by
polynomials, the vector field F is locally Lipschitz. Hence, the theorem of Picard-Lindelöf
ensures that for any V (0) ∈ RS≥0 there exists a unique non-continuable solution of V̇ = F (V ).

I Example 1. We now provide a simple CRN, (Se, Re), with Se = {A,B,C,D,E} and
Re = {A 6−−→ E,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D,E+D 5−−→ 2E+D}, which will be
used as a running example throughout the paper. Its ODE system is given by

V̇A = −6VA − 2VA VB V̇B = −6VB − 2VA VB V̇C = 2VA VB + 5VC VD
V̇D = 6VB V̇E = 6VA + 5VE VD

In the following, we shall assume that the universe of all species is well-ordered with
respect to v. We then say that a function µ : S → S is a choice function of a partition H
of S, if µ(X) = minvH for all H ∈ H and X ∈ H. Also, choice functions can be trivially
lifted to multisets applying them element-wise, e.g., µ(X + Y ) = µ(X) + µ(Y ).
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2.2 Fluid Lumpability
Ordinary Fluid Lumpability. We start by defining the notion of ordinary fluid lumpability,
which is an instance of ordinary lumpability for ODEs [36] specialized to CRNs.

I Definition 2 (Ordinary fluid lumpability). Let (S,R) be a CRN, F be its vector field,
and H = {H1, . . . ,Hm} a partition of S. Then, H is ordinary fluid lumpable if for
all H ∈ H there exists a polynomial ℘H in |H| variables such that

∑
X∈H FX(V ) =

℘H(
∑
X∈H1

VX , . . . ,
∑
X∈Hm VX) for all V ∈ RS≥0.

Informally, a partition H is ordinary fluid lumpable if, for each H ∈ H, the polynomial∑
X∈H FX(V ) in the variables {VX | X ∈ S} can be rewritten into a polynomial ℘H in the

variables {
∑
X∈H VX | H ∈ H}. In particular, if H is known to be an ordinary fluid lumpable

partition of (S,R) and V denotes the solution of V̇ = F (V ) subject to V (0) ∈ RS≥0, the
solution of the aggregated ODE system (ẆH1 , . . . , ẆHm) = (℘H1(W ), . . . , ℘Hm(W )) with
WH(0) =

∑
X∈H VX(0) is such that WH(t) =

∑
X∈H VX(t) for all t ∈ domain(V ).

I Example 3. Consider the ODEs of (Se, Re) of Example 1, and letHO = {{A}, {B}, {C,E},
{D}}. By applying a variable renaming consistent with the blocks of HO, i.e., VCE = VC+VE ,
and by exploiting the linearity of the differential operator we get

V̇A=−6VA−2VAVB V̇B=−6VB−2VAVB V̇CE=2VAVB+6VA+5VDVCE V̇D=6VB

That is, we obtained an ODE system in terms of block variables only. J

Exact Fluid Lumpability. We extend to CRNs the notion of exact fluid lumpability in [37].

I Definition 4 (Exact fluid lumpability). Let (S,R) be a CRN, F its vector field, and H a
partition of S. We call V ∈RS constant on H if VXi = VXj for all H ∈ H, and all Xi, Xj ∈ H.
Then, H is exactly fluid lumpable if F (V ) is constant on H whenever V is constant on H.

I Example 5. Consider the ODEs of (Se, Re) of Example 1, and letHE = {{A,B}, {C}, {D},
{E}}. It is easy to see that A and B have same concentrations at all time points if initialized
equally. In these cases, we can replace the ODEs of (Se, Re) with the ones aggregated
according to HE , obtained by removing V̇B and replacing all occurrences of VB with VA:

V̇A = −6VA − 2VA VA V̇C = 2VA VA + 5VC VD V̇D = 6VA V̇E = 6VA + 5VE VD

That is, we obtained a (lossless) aggregated ODE system written in terms of a variable per
block, chosen according to v. J

We remark that the above definition expresses exact fluid lumpability in terms of properties
of the ODE vector field of a CRN. Instead, in [37] exactly fluid lumpability was defined
directly in terms of the desired dynamical property, i.e., that the ODE solutions within any
equivalence class be equal at all time points. The following result is a new contribution
showing that this dynamical property is fully characterized by the vector-field based definition.

I Theorem 6. Let (S,R) be a CRN and F its vector field. A partition H of S is exactly
fluid lumpable if and only if, for any V (0) ∈ RS≥0 that is constant on H, the underlying
solution of V̇ = F (V ) is such that V (t) is constant on H for all t ∈ domain(V ). 1

1 All proofs are provided in the extended technical report [13].
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3 CRN Bisimulations

Both notions of fluid lumpability given in Section 2 are not convenient to be used directly
because they involve a universal quantifier over the (uncountable) state space. We address
this problem by providing structural conditions that concern only the reactions of a CRN.

3.1 Forward CRN Bisimulation
We now introduce forward CRN bisimulation, an equivalence on species that will turn out
to induce ordinary fluid lumpability. We start with the notions of reaction and production
rate. The former collects the rates at which the concentration of a species X decreases when
reacting with a given partner. The latter collects the positive contribution that X exerts to
the concentration of a species Y , again when reacting with a certain partner.

I Definition 7 (Reaction and production rates). Let (S,R) be a CRN, X,Y ∈ S, and
ρ ∈ MS(S). The ρ-reaction rate of X, and the ρ-production rate of Y-elements by X are
defined respectively as

crr[X, ρ] := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α, pr(X, ρ, Y ) := (ρ(X) + 1)
∑

X+ρ
α−−→π∈R

α · π(Y )

Finally, for H ⊆ S we define pr[X, ρ,H] :=
∑
Y ∈H pr(X, ρ, Y ).

I Definition 8 (Forward CRN Bisimulation). Let (S,R) be a CRN, R an equivalence relation
over S and H = S/R. Then, R is a forward CRN bisimulation (abbreviated FB) if for all
(X,Y ) ∈ R, all ρ ∈MS(S), and all H ∈ H it holds that

crr[X, ρ] = crr[Y, ρ] and pr[X, ρ,H] = pr[Y, ρ,H] (1)

I Example 9. Consider HO = {{A}, {B}, {C,E}, {D}} of Example 3. It can be shown that
HO is an FB, as, e.g., crr[C,D]=crr[E,D]=5, and pr[C,D, {C,E}]=pr[E,D, {C,E}]=10.

We are interested in the coarsest FB, as well as in the coarsest one refining a given initial
partition of species.

I Proposition 10. Let (S,R) be a CRN, I a set of indices, and Ri an FB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is an FB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.

I Theorem 11 (Forward bisimulation implies ordinary fluid lumpability). Let (S,R) be a CRN.
Then, H is an ordinarily fluid lumpable partition of S if H is an FB of S.

FB is only a sufficient condition for lumpability, as discussed in the next example. (However,
Section 6 shows that FB can be effectively applied to interesting existing models.)

I Example 12. Consider the CRN ({F,G}, {F α1−−→ G,G
α2−−→ F}), having ODEs

V̇F = −α1 VF + α2 VG V̇G = −α2 VG + α1 VF

If α1 6= α2, Hc = {{G,F}} is not an FB, as crr[F, ∅] = α1 and crr[G, ∅] = α2. Nevertheless,
the above ODE system is lumpable. Indeed, by applying the variable renaming consistent
with Hc, i.e., VFG = VF + VG, we get a single ODE for VFG, i.e., V̇FG = 0. J
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3.2 Backward CRN Bisimulation
We now introduce backward CRN bisimulation, an equivalence on species that will turn out
to characterize exact fluid lumpability. We start with the notion of cumulative flux rate,
which collects the overall contribution that reactions with a given multiset of reactants ρ
exert to the concentration of a species X.

I Definition 13 (Cumulative flux rate). Let (S,R) be a CRN, X ∈ S, ρ ∈ MS(S), and
M⊆MS(S). Then, we define

fr(X, ρ) :=
∑

ρ
α−−→π∈R

(π(X)− ρ(X)) · α, fr[X,M] :=
∑
ρ∈M

fr(X, ρ).

We call fr(X, ρ) and fr[X,M] ρ-flux rate and cumulativeM-flux rate of X, respectively.

I Definition 14 (Backward CRN bisimulation). Let (S,R) be a CRN, R an equivalence
relation over S, H = S/R and µ the choice function of H. Then, R is a backward CRN
bisimulation (BB) if for any (X,Y ) ∈ R it holds that

fr[X,M] = fr[Y,M] for all M∈ {ρ | ρ α−−→ π ∈ R}/ ≈H, (2)

where any two ρ, σ ∈MS(S) satisfy ρ ≈H σ if µ(ρ) = µ(σ).

I Example 15. Consider HE = {{A,B}, {C}, {D}, {E}} of Example 5. We first note that
{|A|} ≈HE {|B|}, as ≈HE relates multisets with same number ofHE-equivalent species. Also, it
can be shown thatHE is a BB, as, e.g., fr[A,M] = fr[B,M] = −6 forM = {{|A|}, {|B|}}. J

As for FB, there exists a coarsest BB (that refines a given partition of S).
I Proposition 16. Let (S,R) be a CRN, I a set of indices, and Ri a BB for (S,R), for all
i ∈ I. The transitive closure of their union R=(

⋃
i∈I Ri)∗ is a BB for (S,R). In particular,

if each Ri is such that S/Ri refines some partition G of S, then so does S/R.
We now state the mentioned characterization of exact fluid lumpability in terms of BB.

I Theorem 17 (Backward bisimulation characterizes exact fluid lumpability). Let (S,R) be a
CRN. Then, H is an exactly fluid lumpable partition of S if and only if H is a BB of S.

I Remark. We wish to stress that FB and BB are not comparable: First,HO is not a BB,
as fr[C,{A+B}]=2 and fr[E,{A+B}]=0; Second,HE is not an FB, as crr(A,B)=2 and
crr(B,B)=0; Third, for the same reasons, {{A,B}, {C,E}, {D}} is neither an FB nor a BB.
Similar examples on models of biological relevance are provided in Section 6. J

4 Reduced Chemical Reaction Networks up to CRN Bisimulations

We have shown that, given a CRN and a CRN bisimulation R, we can analyze the aggregated
ODE system according to R. We now provide the notion of reduced CRN from which the
aggregated ODEs can be directly generated, as depicted in Figure 1.

I Definition 18 (Forward reduction). Let (S,R) be a CRN, H an FB, and µ its choice
function. The (H, F )-reduction of (S,R) is given by (S,R)(H,F ) = (S(H,F ), R(H,F )), where
S(H,F ) = µ(S) and R(H,F ) is defined as follows: (F1) Discard all reactions ρ α−−→ π such
that ρ 6= µ(ρ); (F2) Replace all remaining reactions ρ α−−→ π with ρ α−−→ µ(π); (F3) Fuse all
reactions that have the same reactants and products by summing their rates.



8 Forward and Backward Bisimulations for Chemical Reaction Networks

CRN reduced CRN

ODEs lumped ODEs
semantics

reduce wrt H

lump wrt H

semantics

Figure 1 Relation among (H-reduced) CRNs and (H-lumped) semantics, with H a bisimulation.

The idea underlying forward reduction is to discard all reactions having non-representative
reagents, and to replace the products of the remaining reactions with their representatives.
This can be seen as a special case of Theorem 4.4 of [10].

I Example 19. Consider the FB HO = {{A}, {B}, {C,E}, {D}} used in Example 3. The
(HO, F )-reduction of (Se, Re) is (with C being the representative of its block) Se(HO,F ) =
{A,B,C,D}, Re(HO,F ) = {A 6−−→ C,B

6−−→D,A+B 2−−→ C,C+D 5−−→ 2C+D}. Note that the
reaction E+D 5−−→2E+D is discarded, as E is not a representative species. J

We now state that the (H, F )-reduction of an FB H induces the ODEs aggregated
according to H. For example, the (HO, F )-reduction of (Se, Re) induces the ODEs shown in
Example 3, if applying the renaming VC = VCE .

I Theorem 20 (Forward reduction induces aggregation). Let (S,R) be a CRN, H an FB and µ
its choice function. Then, (S,R)(H,F ) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F is the vector field of (S,R) and F̂ the one of (S,R)(H,F ), then∑

X∈H FX(V ) = F̂µ(Y )(
∑
X∈H1

VX , . . . ,
∑
X∈Hm VX) for all V ∈ RS≥0, H ∈ H and Y ∈ H.

For the backward reduction, the underlying idea is to keep track only of differential
contributions that affect the representative species µ(S).

I Definition 21 (Backward reduction). Let (S,R) be a CRN, H a BB, and µ its choice
function. The (H, B)-reduction of (S,R) is given by (S,R)(H,B) = (S(H,B), R(H,B)), where
S(H,B) = µ(S) and R(H,B) is obtained as follows: (B1) Replace all reactions ρ α−−→ π with
ρ

α−−→ π̃ where π̃(Xi) := π(Xi) if Xi ∈ µ(S) and π̃(Xi) := ρ(Xi) otherwise; (B2) Replace all
such obtained reactions ρ α−−→ π with µ(ρ) α−−→ µ(π); (B3) Fuse all reactions that have the
same reactants and products by summing their rates.

I Example 22. Considering the CRN (Se, Re) and the BB HE , (B1) changes B 6−−→D in
B

6−−→D+B, and A+B 2−−→C in A+B 2−−→C+B, while(B2)yields{A 6−−→E,A 6−−→D+A,A+A 2−−→
C+A,C+D 5−−→2C+D,E+D 5−−→2E+D}. Finally, (B3) does not introduce any change. J

I Theorem 23 (Backward reduction induces aggregation). Let (S,R) be a CRN, H a BB and µ
its choice function. Then, (S,R)(H,B) is computed in at most O

(
|R| · |S| ·(log(|R|)+log(|S|))

)
steps. Crucially, if F̂ denotes the vector field induced by (S,R)(H,B), it holds that FX(V ) =
F̂X(V ) for all X ∈ µ(S) and V ∈ RS≥0 that are constant on H.

5 Partition Refinement Algorithms for CRN Bisimulations

We study a polynomial-time algorithm for the computation of the coarsest bisimulations that
refine an arbitrary input partition. We start introducing two auxiliary equivalence relations.

I Definition 24 (Splitter equivalences). Let (S,R) be a CRN and H a partition over S. Then,
we write X ∼FH Y if (1) is fulfilled by (X,Y ). Similarly, write X ∼BH Y if (X,Y ) satisfies (2).
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Algorithm 1 Template partition refinement algorithm for the construction of the coarsest
CRN bisimulations that refine some given initial partition G.
Require: A CRN (S,R), a partition G of S and χ ∈ {F,B}.
H ←− G
while true do
H′ ←− S/(∼χH ∩ ∼H)
if H′ = H then

return H
else
H ←− H′

end if
end while

Algorithm 1 iteratively computes the coarsest forward or backward bisimulation (when
χ = F or χ = B, respectively) that refines a given input partition of species of a CRN.
Note that, contrary to CRN reduction algorithms, one (parametric) algorithm suffices for
both bisimulations. Using the above splitter equivalences, at each iteration the blocks of the
current partition S/∼H are split in sub-blocks of ∼χH-equivalent species S/(∼

χ
H ∩ ∼H). The

algorithm terminates when no refinement is performed.
The freedom in choosing the initial partition G is useful in both bisimulations. For FB it

allows to single out species that are the “observables” of the CRN. These are the species for
which the modeler is interested in obtaining distinct ODE solutions, information which would
otherwise be lost if such species are found in larger equivalence classes. BB is lossless, hence
this issue does not arise. However BB requires the same initial conditions for equivalent
species. In this case, an appropriate input partition may tell apart species for which it is
known that the initial conditions are different.

I Theorem 25 (Correctness). Given a CRN (S,R) and a partition G of S, Algorithm 1
calculates the coarsest forward and backward bisimulation that refines G. In both cases, the
number of steps needed is polynomial in the number of species and reactions.

Note that, due to space constraints, we only focussed on the existence of a polynomial-time
algorithm, and in the next section we provide numerical evidence of its scalability. The
proof of this theorem gives a bound of O(|R|2 · |S|5) on the number of steps. Tighter bounds
could be obtained by extending classical partition refinement approaches available for labeled
transitions systems [31, 1] to CRNs, which is however the subject of future work.

6 Evaluation

We now evaluate FB and BB. We first study their effectiveness in reducing the ODEs of a
number of biochemical models from the literature given in the .net format of BioNetGen [5],
version 2.2.5-stable. Using selected models we discuss how FB and BB relate with each
other, and provide a biological interpretation of the aggregations. Finally, we compare them
against κ’s fragmentation. All experiments are replicable using a prototype available at
http://sysma.imtlucca.it/crnreducer/.

Numerical results. Table 1 lists our case studies: four synthetic benchmarks to obtain
combinatorially larger CRNs by varying the number of phosphorylation sites (M1–M4) [33];
a model of pheromone signaling (M5, [35]); two signaling pathways through the Fcε complex

http://sysma.imtlucca.it/crnreducer/
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Original model Forward reduction Backward reduction

Id |R| |S| Red.(s) |R| |S| Speed-up Red.(s) |R| |S| Speed-up

M1 3538944 262146 4.61E+4 990 222 — 7.65E+4 2708 222 —
M2 786432 65538 1.92E+3 720 167 — 3.68E+3 1950 167 —
M3 172032 16386 8.15E+1 504 122 1.16E+3 1.77E+2 1348 122 5.34E+2
M4 48 18 1.00E–3 24 12 1.00E+0 2.00E–3 45 12 1.00E+0
M5 194054 14531 3.72E+1 142165 10855 1.03E+0 1.32E+3 93033 6634 1.03E+0
M6 187468 10734 3.07E+1 57508 3744 1.92E+1 2.71E+2 144473 5575 3.53E+0
M7 32776 2506 1.26E+0 16481 1281 6.23E+0 1.66E+1 32776 2506 x
M8 41233 2562 1.12E+0 33075 1897 1.12E+0 1.89E+1 41233 2562 x
M9 5033 471 1.91E–1 4068 345 1.04E+0 4.35E–1 5033 471 x
M10 5797 796 1.61E–1 4210 503 1.47E+0 7.37E–1 5797 796 x
M11 5832 730 3.89E–1 1296 217 1.32E+1 6.00E–1 2434 217 7.55E+0
M12 487 85 2.00E–3 264 56 1.88E+0 6.00E–3 426 56 1.31E+0
M13 24 18 1.20E–2 24 18 x 7.00E–3 6 3 1.00E+0

Table 1 Forward and backward reductions and corresponding speed-ups in ODE analysis. Speed-
up entries “—” indicate that the original model could not be solved; entries “x” indicate that the
coarsest bisimulation did not reduce the original model.

(M6–M7, [20, 33]); two models of enzyme activation (M8–M9, [2]); a model of a tumor
suppressor protein (M10, [3]); a model of tyrosine phosphorylation and adaptor protein
binding (M11, [14, 15]); a MAPK model (M12, [28]); and an influence network (M13, [11]).

Headers |R| and |S| give the number of reactions and species of the CRN (and of its
reductions), respectively. The reduction times (Red.) account also for the computation of the
quotient CRNs. The speed-up is the ratio between the time to solve the ODEs of the original
CRN and that of the reduced one including the time to reduce the CRN. Measurements
were taken on a 2.6 GHz Intel Core i5 with 4GB of RAM. The time interval of the ODE
solution was taken from the original papers; for M1–M4, where this data was not available,
time point 50.0 was used as an estimate of steady state. The initial conditions for the ODEs
were also taken from the original papers. The initial partition for FB was chosen to be the
trivial one containing the singleton block {S} (i.e., no species was singled out). Instead, the
initial partition for BB was chosen consistently with the ODE initial conditions; that is, two
species may be equivalent only if they have the same initial conditions in the original CRN.
This ensured that the backward reduced CRN was a lossless aggregation of the original CRN.

We make three main observations: (i) FB and BB can reduce a significant number of
models. In the two largest models of our case studies, M1 and M2, the bisimulations were
able to provide a compact aggregated ODE system which could be straightforwardly analyzed,
while the solutions of the original models did not terminate due to out-of-memory errors,
consistently with [33]. (ii) FB and BB are not comparable in general. For instance, both
reduce M5 to 10855 and 6634 species, respectively, while M6 is reduced to 3744 species by FB,
and to 5574 by BB. Also, FB was able to reduce M7–M10, while BB did not aggregate. The
influence network M13 shows the opposite; in fact, none of the influence networks presented
in [11] can be reduced up to FB (here we showed M13, which is the largest one from [11]).
(iii) Models M1–M4 and M12 show that the intersection between FB and BB is nonempty.

Biological interpretation. Models M1 and M2 enjoy significant reductions and ODE analysis
speed-ups. Here we use them to explain that FB and BB are effective at aggregating species
representing symmetric sites in a complex. For this, let us consider M4, chosen for space
reasons. A typical equivalence class is for instance {E(s!1).S(p1∼P, p2∼U !1), E(s!1).S(p1∼
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U !1, p2∼P )}. According to the syntax of the BioNetGen language, the CRN species are
formed from basic molecules S and E. Molecule S has two binding sites (p1, and p2) which
can be either in phosphorylated state (P ) or not (U); E has one stateless binding site (s) which
can bind to those of S to form a complex. The two sites of S have equivalent capabilities in
terms of binding with other species or changing state. For instance, the above equivalence
class contains two species composed by S and E, with E bound to the unphosphorylated
site of S (here the exclamation mark links the binding sites used to form the species).
Models M1 and M2 exhibit a fast growth of the number of species due to a larger number of
symmetric sites, requiring distinct species to track exactly which site exhibits a particular
phosphorylation state. This form of symmetry has also been studied in [9] where the authors
propose an approach to detect it directly at the κ level. However, an experimental comparison
could not be performed because [9] is not yet implemented. Although both bisimulations
give the same equivalence classes in these cases, the reduced CRNs have different reactions,
since FB provides the dynamics of the sums of equivalent species, while BB considers the
distinct dynamics of representative species. Instead, aggregation of identical binding sites
is supported by BioNetGen. This can be seen in models M6 and M7, since they both have
Lig(l, l), a ligand with two copies of site l. Intuitively, the rule

Rec(a) + Lig(l, l)→ Rec(a!1).Lig(l!1, l) (3)

gives rise to only one chemical complex in the underlying CRN, Rec(a!1).Lig(l!1, l). This
represents the (forward and backward) canonical representative of a ligand bound to a single
receptor Rec(a). To see this, let us rename the two sites and expand the rule appropriately:

Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1!1, l2)
Rec(a) + Lig(l1, l2)→ Rec(a!1).Lig(l1, l2!1) (4)

Then, this underlying CRN will distinguish the two sites. However, applying either of our
CRN bisimulations leads to the CRN for Equation (3).

We remark that the original CRN sizes of M6 and M7 already account for the aggreg-
ations obtained with BioNetGen. Nevertheless, our CRN bisimulations allow for further
(significant) reductions. For instance, part of the reductions for M6 are due to the presence
of Rec(a, b, g1, g2), a molecule with symmetric sites g1 and g2, similarly to those of M4.

Symmetric sites are not the only property captured by our bisimulations. For instance in
both M8 and M9 one of the FB equivalence classes is given by:{

J(k!1).R(x!1, i∼on, l), J(k!1).L(r1!2, r2).R(x!1, i∼on, l!2),
J(k!1).L(r1, r2!2).R(x!1, i∼on, l!2),
J(k!1).L(r1!2, r2!3).R(x!1, i∼on, l!3).R(x, i∼on, l!2)

}
.

A biological interpretation is that a species containing the molecule J behaves in the same
way as long as it is bound to a molecule R having binding site i in state “on”. This is
independent of whether R is further complexed with other molecules via its binding site l;
For instance, the first species models that R is only bound to J , while in the second and
third species it is also bound to L. Finally, in M5, one of the BB equivalence classes is{

Dig2(p!1).Ste12(dig1,dig2,dna!1,mapk), Fus3(p!1).Ste12(dig1,dig2,dna!1,mapk),
Msg5(p!1).Ste12(dig1,dig2,dna!1,mapk), Sst2(p!1).Ste12(dig1,dig2,dna!1,mapk),
Ste12(p!1).Ste12(dig1,dig2,dna!1,mapk), Ste2(p!1).Ste12(dig1,dig2,dna!1,mapk)

}
.
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It captures that genes Dig2, Fus3, Msg5, Sst2, Ste12, and Ste2, bind to the protein Ste12
with equal rates. This yields equivalent dynamics for these Ste12-gene complexes, and all
those formed by them which are equal up to the gene bound to Ste12.

Experimental comparison with κ-based reduction techniques. We now experimentally
compare our CRN bisimulations and fragmentation in the case of rule-based biochemical
models for which the underlying CRN can be fully enumerated. All models in Table 1 belong
to this class; however, none of them was originally available in κ, the only language that
supports fragmentation. Thus, we performed a manual translation of a selection of the case
studies from the BioNetGen language into κ. 2 We found:

Models that can be reduced by CRN bisimulations but not by fragmentation. The κ
encoding of M12 (a case where only cosmetic syntactical changes are required) returned
85 fragments, equal to the size of the CRN, while both FB and BB reduced to 56 species.
The encodings of M6 and M7 necessitated expansions analogous to Equation (4) because
κ does not currently support distinct sites with the same name. This led to bigger initial
CRNs, for which fragmentation returned 58040 fragments for M6 and 10930 for M7.
Models that can be reduced by fragmentation but not by our bisimulations. The κ model of
early events of the EGF pathway in [6] is reduced from 356 species to 38 fragments [17],
while no aggregation is obtained with either FB or BB.
Models that can be reduced by both our bisimulations and fragmentation. The κ encodings
of models M1–M4 present different reductions than using either bisimulation, specifically
38, 34, 30 and 10 fragments (versus 222, 167, 122, and 12 FB and BB equivalence
classes, respectively). It can be shown that, in the latter examples, the reductions are
complementary, in the sense that no two bisimilar species are included in the same
fragment. While our bisimulations captured symmetric sites, fragments explain that the
sites of S are independent, i.e., the state of a site does not affect the dynamics of the
other. For instance, one of the fragments for model M4 is

{S(p1∼P, p2∼P ), S(p1∼P, p2∼U), E(s!1).S(p1∼P, p2∼U !1), F (s!1).S(p1∼P, p2∼P !1)}

which essentially collects all species where the p1 site of molecule S is phosphorylated.

7 Conclusion

Forward and backward bisimulations are equivalence relations over the species of a chemical
reaction network inducing a partition of the underlying mass-action system of ordinary
differential equations. An experimental evaluation has demonstrated their usefulness by
showing their complementarity as well as significant model reductions in a number of
biochemical models available in the literature. This has been supported by a prototype,
which currently allows a ready-to-use tool-chain with BioNetGen, a state-of-the-art tool.

Ongoing work is studying stochastic counterparts of both forward and backward bisimula-
tions, to obtain model reductions when the semantics of chemical reaction networks based on
continuous-time Markov chains is considered. Also, we plan to investigate the applicability
of our bisimulations in other model repositories, e.g., those using the well-known SBML
interchange format (http://sbml.org).

2 All discussed κ-encodings are provided in the technical report [13] and are available for download.

http://sbml.org
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